GUIDELINES ON SAMPLING STRATEGY AND SUBMISSION OF TOXIC SUBSTANCES MONITORING / SAMPLE ANALYSIS REPORT
(1) SAMPLING STRATEGIES

1. When conducting hygiene monitoring or sampling, the following strategies shall as far as possible be followed:-

(a) The atmosphere of any workplace in which toxic airborne contaminants are given off shall be monitored at sufficient intervals.

(b) Occupations with the highest expected exposure shall be monitored first. Representative subjects shall be selected for sampling.

(c) All monitoring shall represent the personal exposure unless otherwise specified. The monitoring device should be attached as close as possible to the worker’s breathing zone (within 30 cm or about 1 ft from the nose). Note the periods when exposure may be high due to specific activities or process cycles. Change the sample collection medium when conditions show signs of overloading due to excessive airborne contaminants.

(d) If area monitoring is conducted, the monitoring device or sampling medium shall be positioned at about 1.2 to 1.8 m (3 to 4 ft) from the floor. Make sure that the sample collection medium is not in direct contact with, or placed too close to any settled dust or spilled chemical.

(e) Samples representing a full-shift exposure shall be collected for evaluating or assessing the time-weighted average (TWA) concentration.

(f) Before conducting the air monitoring, the air service provider shall obtain from the factory occupier or his representative the information on the work process to be monitored. The information shall be recorded in Part C of the Hygiene Air Monitoring Report - Information on Work Process.

(g) A minimum of 6 hours of sampling is required to evaluate exposure over a full 8-hour shift, or 8 hours of sampling for a full 12-hour shift. However, this is only applicable to work process with small concentration variations. Otherwise, a full shift sampling is required.

If the worker is exposed to contaminants for less than 6 hours, a partial-period sampling could be conducted covering the period of exposure. In this case, the period, which was not sampled, could be assumed to have zero exposure. [An example of the calculation of TWA 8-hr concentration is in appendix 1].
2. All sampling and monitoring shall be carried out in accordance with the recommended procedures. Ensure that all active monitoring devices are calibrated. Before use, check the batteries of the devices for charge and the expiring date of the sampling medium. In addition, make sure that the following are carried out:-

(a) Sample collection medium (membrane filter) for monitoring of total particulate shall be desiccated for at least 24 hours prior to weighing. If a vacuum dessicator is used, desiccation of filter can be reduced to 30 minutes.

(b) Sorbent tube used for monitoring of gases or vapours shall be positioned vertically to avoid "channelling" (i.e. the adsorbent shifts and forms a channel within the tube) during sample collection. After sampling, the sorbent tube shall be capped at both ends and stored at or below 4 °C prior to analysis in order to prevent sample loss.

3. All equipment and instruments used for sampling shall be calibrated in accordance with standard calibration methods before and after sampling. The persons carrying out the air monitoring must ensure that the sampling equipment or devices used are reliable and accurately calibrated.

4. The person carrying out the monitoring shall as far as possible remain at the workplaces until all the samples are collected. He should ensure that the monitoring devices are not tampered with. He should also check the flowrate of the monitoring devices after the first 15-30 minutes and at intervals of about two hours thereafter.

4. The sample size should be at least 3 to 5 samples per job-classification/group, or from 25% to 50% of those in the group for groups of 10 or more.

6. The frequency of air monitoring depends on the exposure level:-

\[
\begin{align*}
< 10\% \text{ of the PEL} & : \quad * \text{ No air monitoring is required} \\
10 - 50\% \text{ of the PEL} & : \quad \text{At least once a year} \\
> 50 - 100\% \text{ of the PEL} & : \quad \text{At least once every six months} \\
> \text{PEL} & : \quad \text{At least once every three months, until the exposure is reduced to below the PEL by appropriate control measures.}
\end{align*}
\]

A re-assessment should be carried out if there is any change in the process.
Note:
Exposure level of 50% is known as the "action level" and shall as far as possible be reduced to less the 50% PEL.

7. If it is not possible to conduct a full-shift sampling, a series of "grab" or "spot" samples can be taken randomly throughout the workshift using detector-tubes or other appropriate instruments. The acceptable number of samples is 4 to 7.

Note: Refer to the 1st Schedule of the Workplace Safety and Health (General Provisions) Regulations for PEL values.
(II) PRECAUTIONS IN SAMPLING AND MONITORING

1. **Follow the recommended sampling protocols**
 When collecting an air sample, always follow recommended protocols on the preparation, handling and storage of collection media, sampling flow rate, minimum and maximum sample volumes, and analytical techniques.

2. **Obtain data that are useful for hazard evaluation**
 The method of sampling must be sensitive enough for quantifying the exposure level of interest. Long-term sampling is required to assess exposure to a substance having a PEL (Long Term). Short-term sampling is needed to evaluate exposure to a substance with a PEL (Short Term). Respirable aerosol samples should be collected for substances having a respirable particulate mass PEL.

3. **Consider the physical state of the contaminant**
 If an airborne contaminant can exist simultaneously in particulate and vapour phase, choose the sampling media to collect both phases of the contaminant of interest e.g. a pre-filter can be used with a sorbent tube to collect particulate and vapour phases of a contaminant.

4. **Determine the minimum sample volume**
 Collect a sample with sufficient volume to obtain a minimum quantity of contaminate that is required for reliable laboratory quantization.

5. **Clean sampling devices before use**
 Always wash or clean the sampling devices e.g. cyclone separators before use. The contaminants deposited on the inner surfaces of these devices can affect the results of sampling. If sampling bags are used for sampling, evacuate and purge with clean air or nitrogen before reuse.

6. **Use EMI or RFI shielded pumps**
 The flow rate of pumps can be affected by electromagnetic interference (EMI) or radio frequency interference (RFI) from devices such as electric motors and high voltage equipment. EMI or RFI shielded pumps are not affected by this interference.

7. **Do not use static samples to assess personal exposures**
 Measurement of contaminant levels from a static or area sample is typically not related to personal exposure, unless the person is stationary at the area being sampled. Personal samples should be collected for persons who are not stationary but move around.

8. **Use constant flow pumps**
 Constant flow pumps will maintain a constant flow even if the flow resistance increases due to filter loading or pinched sampling tubing. Sampling pumps with this feature will introduce less error in sampling volume estimation.
9. **Use validated passive samplers**
 Not all commercially available passive samplers meet the requirements for precision and accuracy. Always ask the supplier of the passive samplers for complete documentation of performance testing.

10. **Collect enough number of samples**
 Sufficient numbers of samples are required to provide a true characteristic of exposure levels. Sample size should be at least 3 to 5 samples for each job classification/group or from 25% to 50% of those in the group for groups of 10 or more.

 When it is not possible to conduct full-shift sampling throughout the workshift, grab or spot samples (using detector-tubes or other direct reading instruments) can be taken and the sample size should be 4 to 7.

11. **Do not use grab samples to determine 8-hr exposures**
 Grab samples are usually used to determine short-term exposure levels. Long-term integrating samples should be taken to assess full-shift exposures.

12. **Calibrate sampling pumps before and after sampling**
 Sampling pumps should be calibrated before and after sampling to set and verify the flow rate. Calibration should be performed using a primary standard e.g. a soap bubble meter or an electronic film flow meter. If a secondary standard e.g. a rotameter is used, it must be calibrated to a primary standard at regular intervals.

13. **Do not use adapter on the inlet of a filter cassette during calibration**
 Adapters should not be used on the inlet of a filter cassette when calibrating a sampling pump with a filter in-line. Since the adapter will not be used for actual sampling, the air flow characteristics during calibration will be different from the actual flow characteristics during sampling.

14. **Misuse of “self-calibrating” pumps**
 Sampling pumps with internal flow indicators should be calibrated frequently with a primary standard. Calibration should be performed with the sampling train or collection medium in-line, as this will be used in the field.

15. **Do not reuse plastic filter cassettes**
 Plastic filter cassettes are designed for one-time use, not for subsequent reloading. Opening and closing cassettes repeatedly can produce deformities, which can cause incomplete sealing and leaks during sampling.

16. **Orientation of sorbent tubes in a vertical position during sampling**
 Airborne contaminants take the least resistance path when sampled through a collection medium. If a sorbent tube is not placed in a vertical position, the collecting medium may fall away from the wall of the tube, forming a small
channel through which air flows more readily. This will reduce the collection efficiency.

17. **Orientation of cyclone in a vertical position during sampling**
 The performance of a cyclone is affected by orientation. The device should be held in a vertical position during sampling. The 50% cut-point i.e. the size of particulate removed with 50% efficiency, of a 10-mm cyclone is different at different orientations.

18. **Never invert a cyclone during or after sampling**
 Cyclones separate non-respirable (larger) particles in the grit pot, and collect respirable particulates on the filter. If a cyclone is inverted, larger particles will fall from the grit pot onto the filter, resulting in an erroneous high concentration measurement.

19. **Sample the design flow rate when using a cyclone**
 Cyclones are designed to collect the desired respirable particulates at a specific flow rate. A different flow rate will change the 50% cut-point of a cyclone and its collection efficiency.

20. **Sample at the recommended flow rate and collect the recommended volume**
 Always follow the recommended sampling flow rate and sampling volume based on the published sampling and analytical methods. Sampling gases and vapours at higher flow rates through sorbent tubes reduces collection efficiency. Sampling too much air can overload a sorbent tube or filter. Check the filters regularly for signs of excessive loading.

21. **Take notes on work operations or practices during the sampling period**
 Observe the work conditions and operations, which could affect sampling results. Ensure that the sampling devices are not tampered with. Do not attach or place the sampling devices in the morning and collect them in the afternoon.

22. **Determine the sampling time accurately**
 Make an accurate measurement of the sampling time, especially for short-term sampling. The measured concentration depends on the total sampling time.

23. **Do not use passive samplers under stagnant air conditions**
 Passive samplers require air movement across the face of the sampler. This condition is met during personal sampling on a mobile worker, but not area sampling in calm air. Use of passive samplers under stagnant air conditions produces an erroneous low measurement of concentration.
24. **Do not assemble or handle collection materials in contaminate areas**
 Sampling media and collection materials should be assembled, disassembled, processed and packed in clean or uncontaminated areas, before and after sampling. Assembling or processing collection devices in contaminated areas can produce inexplicably significant amounts of analyte on blanks and erratic high exposure measurements.

25. **Document chain-of-custody and store samples properly after collection**
 Sorbent tubes should be stored no longer than 2 to 3 weeks at ambient or refrigerated temp before analysis. Samples collected in sample bags should be analysed within 48 hrs for best results. Samples should not be in the hands of unknown persons. A neat and professional chain-of-custody form should be documented.

26. **Always supply blanks to the analytical laboratory**
 Blank samples are analysed to reduce the errors from background contamination on the sampling media. Always supply blanks to the analytical laboratory when sending samples for analysis.

27. **Use an accredited analytical laboratory**
 Use of an analytical laboratory with accreditation or an effective quality assurance programme will ensure the credibility of the data.

28. **Correct the flow rate for changes in temperature and pressure**
 A mathematical correction of the air volume sampled is necessary if the ambient temperature and pressure at the calibration site is significantly different from those at the sampling site. Some air sampling pumps come with temperature and pressure sensors that automatically correct the flow rate for changes in these environmental conditions.

29. **Document and report pertinent information**
 Record all critical sampling parameters such as sampling duration, temperature, barometric pressure, and details concerning location of sampling, subject monitored, and sample identification. Present sampling data and related information in a neat and organised format.
1. Analytical results of air samples should be submitted to the customer within 3 weeks from the date of receipt of samples from the customer, if the air monitoring is not conducted by the same organisation that analyses the samples.

2. Air monitoring results should be submitted in the attached hygiene monitoring report form to the customer by the air monitoring service provider within 3 weeks from the date of receipt of analytical results from the laboratory. A copy of the analysis results from the laboratory should be attached to the hygiene monitoring report. (Note: Air samples shall be sent to the analytical laboratory for analysis as early as possible after sampling.)

3. Air monitoring results should be submitted in the attached hygiene monitoring report form to the customer within 6 weeks from the date of air monitoring, if both air monitoring and sample analysis are conducted by the same organization.

4. Air monitoring results should be submitted by the factory occupier to the Occupational Safety and Health Division, Ministry of Manpower, within 2 weeks from the date of receipt of the results from the air monitoring service provider or the analytical laboratory.

5. All analytical laboratories shall use methods, which are sensitive enough to detect or measure the concentration below 10% of the permissible exposure level (PEL) of each chemical being analyzed. Report of result "<PEL" is not acceptable.

6. The particulars of the subjects monitored, including their full names, NRIC (for Singaporeans) or FIN numbers (for foreigners) must be recorded in the hygiene monitoring form. DO NOT record the work permit, passport or employee numbers. A sample of the completed form is in Appendix 1.

7. A layout indicating the location(s) of sampling point(s) should be attached to the hygiene monitoring report. For personal sampling of a subject who is stationed at a specific location for the whole workshift, the personal sample's location should be indicated in the map. However, if the personal sample is taken from a subject who moves around, the work-area of the subject should as far as possible be indicated on the map. If the work area is too large to be indicated, the department or section where the subject works should be stated in the "Remarks" column of the hygiene monitoring report form. A sample of a layout plan is in Appendix 2.

8. If the measured TWA concentration exceeds 50% PEL, the air monitoring service provider has to confirm that he has provided appropriate recommendations(s) to the factory occupier to control or limit the exposure.
This information should be given in Part D Findings and Recommendations of the report form. A sample of this is attached in Appendix 1.
HYGIENE TOXIC SUBSTANCES MONITORING REPORT

Part A: AUTHORISED PERSONNEL DETAILS

Authorised Personnel: ___________________________ NRIC/FIN No: _____________________
Organisation conducting the assessment: __
E-Service Account User: ___________________________

Part B: WORKPLACE DETAILS

Company Name: __
Address: ___
UEN No: ______________________________
Workplace No: __________________________
Contact No. : ___________________________ Fax No: _____________________________
Date of Monitoring: _______________________
Workplace Representative present during monitoring: _______________________________
Part C: EXPOSURE ASSESSMENT

<table>
<thead>
<tr>
<th>Toxic Substances Monitored</th>
<th>Total No. of Persons Exposed</th>
<th>Type of Sample (Personal / Static)</th>
<th>Sampling Method</th>
<th>Process</th>
<th>Duration of Process/work (hrs/min)</th>
<th>Existing control measures</th>
<th>Monitoring Time & Duration (min)</th>
<th>PEL Standard for comparison (Short/Long Term)</th>
<th>Concentration measured or TWA concentration (mg/m³)</th>
<th>Name & ID of Person Monitored</th>
<th>Location of Monitoring (denarcate on the layout plan attached)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Refer to MOM's Guidelines on Sampling and Strategy and Submission of Toxic Substances Monitoring/Sample Analysis Report for information on completing Part C.
Part D: FINDINGS AND RECOMMENDATIONS

I confirm that:

- The instruments used were calibrated before and after conducting the air monitoring.
- Recognized sampling and analytical methods were adopted, such as those recommended by the US National Institute of Occupational Safety & Health Administration.

I have evaluated the results of the air monitoring and informed the factory occupier of the process(es) where the TWA concentration exceeded 50% PEL. I have advised the factory to look into control measures to reduce the exposure.

<table>
<thead>
<tr>
<th>Finding(s)</th>
<th>Recommendation(s)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HYGIENE TOXIC SUBSTANCES MONITORING REPORT

Part A: AUTHORISED PERSONNEL DETAILS

Authorised Personnel: _____Tan Au Yau___________ NRIC/FIN No: _S1234567K_

Organisation conducting the assessment: _______DEF Consultancy Pte Ltd___________

E-Service Account User: _______John Lim___________

Part B: WORKPLACE DETAILS

Company Name: _______________ABC Pte Ltd___________________________________

Address: _____123 Jalan Toa Payoh, Singapore 319900____________________________

UEN No: _____197100123R____________ SSIC: ___30139___________________________

Workplace No: _________197100123R 0002____________

Contact No. : 61234567 Fax No: _______________________________

Date of Monitoring: _____05-June-2009_________

Workplace Representative Present During Monitoring: _________Ms Candy Neo_________
<table>
<thead>
<tr>
<th>Toxic Substances Monitored</th>
<th>Total No. of Persons Exposed</th>
<th>Type of Sample (Personal / Static)</th>
<th>Sampling Method</th>
<th>Process</th>
<th>Duration of Process/ work (hrs/min)</th>
<th>Existing control measures</th>
<th>Monitoring Time & Duration (min)</th>
<th>PEL Standard for comparison</th>
<th>Concentration measured or TWA (mg/m3)</th>
<th>Name & ID of Person Monitored</th>
<th>Location of Monitoring (denote on the layout plan attached)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>2</td>
<td>S</td>
<td>Sorbent Tubes</td>
<td>Grinding</td>
<td>0900 hr - 1000 hr</td>
<td>No Control</td>
<td>120</td>
<td>Long Term</td>
<td>0.01</td>
<td>0.002</td>
<td>In Blanking Room(S4)</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>2</td>
<td>P</td>
<td>Sorbent Tubes</td>
<td>Degreasing</td>
<td>0942 hr - 1712 hr</td>
<td>LEV</td>
<td>450</td>
<td>Long Term</td>
<td>805.9</td>
<td>805.9</td>
<td>Bai Guang G1234567U P1</td>
</tr>
<tr>
<td>Isophorone</td>
<td>3</td>
<td>P</td>
<td>Sampling Bag</td>
<td>Brazing</td>
<td>0952 hr - 1007 hrs</td>
<td>LEV</td>
<td>15</td>
<td>Short Term</td>
<td><2</td>
<td>-</td>
<td>Lim Ah Teck S1234567T</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>12</td>
<td>S</td>
<td>Sorbent Tubes</td>
<td>Injection Processing</td>
<td>0952 hr - 1007 hrs</td>
<td>LEV</td>
<td>15</td>
<td>Short Term</td>
<td>0.41</td>
<td>0.41</td>
<td>Injection Moulding - Machine S1</td>
</tr>
<tr>
<td>Isophorone</td>
<td>4</td>
<td>S</td>
<td>Sorbent Tubes</td>
<td>Printing Operation</td>
<td>0952 hr - 1007 hrs</td>
<td>No Control</td>
<td>15</td>
<td>Short Term</td>
<td><2</td>
<td>-</td>
<td>Ling Mee S1234567T Printing Room (Point 2)</td>
</tr>
</tbody>
</table>
Part D: FINDINGS AND RECOMMENDATIONS

I have evaluated the results of the air monitoring and informed the factory occupier of the process(es) where the TWA concentration exceeded 50% PEL. I have advised the factory occupier to look into control measures to reduce exposure.

Finding(s)	Recommendation(s)	Remarks
Most of the concentrations were found to be within 10%-50% of PEL set by the MOM's Long Term Permissible Exposure except for personal exposure for iso-propyl (IPA) at Lens Centering Room and Spray Painting Room which have exceeded 50% of the PEL but still below the acceptable PEL. | Conduct Industrial Hygiene Assessment annually at respective areas of concern except for personal exposure of IPA at Lens Centering Room and Spray Painting Room need to monitor at least once every 6 months. |
Important Notes for Completing Part C:

1. **Total No. of Persons Exposed:** refers to *all* people who are exposed to the chemical over *all* workshifts

2. **Sampling Method:** Direct Reading Instruments, Filter, Filter with cyclone, Impinger, Passive samplers (badges/tubes), Sampling Bag, Sorbent Tubes

3. **Process:** Choose one process below that best describes the work performed.

<table>
<thead>
<tr>
<th>Abrasive blasting</th>
<th>Forging</th>
<th>Painting (Spray)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly of Parts</td>
<td>Formulation</td>
<td>Palletizing</td>
</tr>
<tr>
<td>Blending/Mixing</td>
<td>Foundry Operation</td>
<td>Plastic injection moulding</td>
</tr>
<tr>
<td>Blowing</td>
<td>General Housekeeping</td>
<td>Plastic blow moulding</td>
</tr>
<tr>
<td>Brazing</td>
<td>Glueing (Brush)</td>
<td>Powder coating</td>
</tr>
<tr>
<td>Buffing/Polishing</td>
<td>Glueing (Spray)</td>
<td>Printing (offset)</td>
</tr>
<tr>
<td>Car Maintenance</td>
<td>Grinding</td>
<td>Printing (others)</td>
</tr>
<tr>
<td>Casting</td>
<td>Heat Treatment</td>
<td>Printing (silk screen)</td>
</tr>
<tr>
<td>Chemical Plant</td>
<td>Injection Moulding</td>
<td>Quality Control / Testing</td>
</tr>
<tr>
<td>Cleaning</td>
<td>Inspection</td>
<td>Quarrying</td>
</tr>
<tr>
<td>Cleaning (acid/alkali)</td>
<td>Laboratory (Specimens dissection)</td>
<td>Sanding</td>
</tr>
<tr>
<td>Cleaning (solvents)</td>
<td>Laboratory (testings)</td>
<td>Soldering</td>
</tr>
<tr>
<td>Coiling</td>
<td>Lamination</td>
<td>Solvent Cleaning/Drying</td>
</tr>
<tr>
<td>Curing of materials</td>
<td>Maintenance</td>
<td>Sorting</td>
</tr>
<tr>
<td>Cutting/Sawing</td>
<td>Masking</td>
<td>Sterilisation</td>
</tr>
<tr>
<td>Degreasing</td>
<td>Materials transfer/moving</td>
<td>Storage/warehousing</td>
</tr>
<tr>
<td>Drilling</td>
<td>Melting/smelting</td>
<td>Surface preparation</td>
</tr>
<tr>
<td>Drumming</td>
<td>Metal Injection Moulding</td>
<td>Thermal Spraying</td>
</tr>
<tr>
<td>Dry Cleaning</td>
<td>Metal Machining</td>
<td>Washing</td>
</tr>
<tr>
<td>Drying of Materials</td>
<td>Metal Stamping</td>
<td>Waste Treatment</td>
</tr>
<tr>
<td>Electroplating</td>
<td>Others</td>
<td>Weighing</td>
</tr>
<tr>
<td>Etching</td>
<td>Packing</td>
<td>Welding</td>
</tr>
<tr>
<td>Extrusion/Drawing</td>
<td>Painting (Brush)</td>
<td>Woodworking</td>
</tr>
</tbody>
</table>
Existing Control Measures: Dilution ventilation, Local exhaust ventilation, No control, Partial enclosure, Personal Protective Equipment, Supression, Total enclosure

Concentration measured or TWA_{8hr} concentration: Please provide measured concentration for continuous exposure for a representation period or TWA_{8hr} concentration for intermittent exposure.

[For intermittent work processes, if the person monitored is not exposed to the measured chemical for a period of time, a zero exposure concentration can be assumed for this period]

Calculation of Time-Weighted Average, TWA_{8hr} Concentration

\[TWA = \frac{(C_1 T_1 + C_2 T_2 + \ldots + C_n T_n)}{(T_1 + T_2 + \ldots + T_n)} \]

Example:

Duration of intermittent process for an 8 hr shift is 2 hr.

Concentration of Lead \(C_1 = 0.01 \text{ mg/m}^3 \) \(T_1 = 2 \text{ hr} \)

\(C_2 = 0 \text{ mg/m}^3 \) \(T2 = 6 \text{ hr} \)

\[TWA_{8hr} = \frac{(0.01 \times 2 + 0 \times 6)}{(2 + 6)} = (0.0025 \text{ mg/m}^3) \]

Person's ID: Please give the NRIC no. (for Singaporeans only) of FIN no (for foreigners) of the persons monitored. DO NOT give the work permit, passport or employee numbers.